Finite Simple Groups Exercise Sheet 3 Due 14.05.2019

Exercise 1 (6 Points).

Let G be a finite group. For a prime p, let n_p denote the number of p-Sylow subgroups of G.

- 1. Assume that |G| = pm with p not dividing m. How many elements of order p has G?
- 2. Suppose that $|G| = p_1 \dots p_k$ where p_1, \dots, p_k are distinct primes. Deduce that

$$|G| \ge 1 + \sum_{i=1}^{k} n_{p_i}(p_i - 1).$$

3. Conclude using Sylow's Theorem that if |G| = pqr with p > q > r primes, then G is not simple.

Hint: What are the least possible values for n_q and n_r ?

Exercise 2 (8 Points).

Let $G = S_4$ and let X be the set of three partitions of $\{1, 2, 3, 4\}$ into two sets of size 2.

- 1. Show that any element in G gives a permutation of X. Deduce that S_4 acts on the set X.
- 2. Deduce that S_4 has a normal subgroup V_4 such that $S_4/V_4 \cong S_3$ and $V_4 \cong C_2 \times C_2$.

The alternating group A_n is the normal subgroup of S_n consisting of even permutations. An even permutation is a permutation whose cycle decomposition has an even number of cycles of even size.

- 3. Conclude that A_4 is not simple.
- 4. Which is the number of elements of order 5 of A_5 ? Do not use the fact that A_5 is simple.

Exercise 3 (6 Points).

Let G be a group acting transitively on a set X. For elements x, y in X, put

$$X(x,y) = \{g \in G : xg = y\}.$$

Fix x in X.

- 1. For h in G, show that X(x, xh) is the right coset $\operatorname{Stab}_G(x)h$ of $\operatorname{Stab}_G(x)$.
- 2. Prove that the map $\phi : y \mapsto X(x, y)$ is a bijection between X and the set of right cosets of $\operatorname{Stab}_G(x)$.
- 3. Deduce that $\phi(xh) = (\phi(x))h$ for every h in G.